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Abstract

In transportation modeling, after defining a road network and its origin-destination (OD) matrix, the next important question is 

how to assign traffic among OD-pairs. Nowadays, advanced traveler information systems (ATIS) make it possible to realize the user 

equilibrium solution. Simultaneously, with the advent of the Cooperative Intelligent Transport Systems (C-ITS), it is possible to solve 

the traffic assignment problem in a system optimum way. As a potential traffic assignment method in the future transportation system 

for automated cars, the deterministic system optimum (DSO) is modeled and simulated to investigate the potential changes it may 

bring to the existing traditional traffic system. In this paper, stochastic user equilibrium (SUE) is used to simulate the conventional 

traffic assignment method. This work concluded that DSO has considerable advantages in reducing trip duration, time loss, waiting 

time, and departure delay under the same travel demand. What is more, the SUE traffic assignment has a more dispersed vehicle 

density distribution. Moreover, DSO traffic assignment helps the maximum vehicle density of each alternative path arrive almost 

simultaneously. Furthermore, DSO can significantly reduce or avoid the occurrence of excessive congestion.
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1 Introduction

Traffic assignment is a process to allocate a given set of 
travelers to a specific transport system. As part of the trans-
portation planning process, one of the purposes of traf-
fic assignment is to assess the impact of limited improve-
ments and extensions on a specific transportation network 
by assigning estimated upcoming trips (Patriksson, 2015). 
The traffic assignment model must recognize the individ-
ual traveler's route choice behavior. There are two differ-
ent route choice models: user equilibrium (UE) and system 
optimum (SO) traffic assignment (Pauer and Török, 2019; 
Seger and Kisgyörgy, 2020). Wardrop (1952) proposed 
these two fundamental principles to model the travelers' 
route choice. The UE principle means the travelers mini-
mize their own travel costs when they travel to their des-
tination. In this case, all the used routes have the same 
travel costs between a particular origin-destination (OD) 
pair. No driver could reduce journey cost by altering to 
another path. Although many factors affect the drivers' 
route choice, travel time is the chief element in travel cost. 

So, travel cost and travel time are used interchangeably in 
this paper. The SO means that the average journey time 
is at a minimum. By affecting the drivers' route choice 
may lead travelers to minimize the total travel time. All 
the paths between a specific OD pair share the same mar-
ginal travel times (Wardrop, 1952). Pigou (2013) found 
that the UE has generally not minimized the total travel 
cost. Centralized control over route choice and congestion 
pricing strategy are two possible methods that can be used 
to obtain a SO assignment (Patriksson, 2015).

With the rapid development of technology, more 
and more communication equipment has been intro-
duced into the transportation system. The Collaborative 
Intelligent Transport System (C-ITS) uses Vehicle-to-
Everything (V2X) communication techniques to improve 
road safety and traffic efficiency (Sjoberg, et al., 2017). 
This technology can work as a central controller provid-
ing a probability to control the vehicle's route choice in the 
routing phase. Besides, the emergence of robo-taxi and the 
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popularity of mobility-as-a-service may bring the direct 
central control into reality, i.e. the system-optimal flows 
can be obtained. Another way to realize the system opti-
mum is to apply a congestion pricing strategy. It is the pas-
senger's failure to notice the total cost they add that causes 
the difference between user optimum and system opti-
mum. Any additional passenger of a network is a marginal 
user.  To achieve system optimum, the passengers must be 
aware of the total cost they put on others. By applying a 
congestion pricing strategy, every trip-maker can realize 
the marginal cost caused by them (Beckmann et al., 1956).

Despite its perfect theoretical basis, the first best pric-
ing scheme is of little practical interest and may not be 
valid at present. It is impractical to charge users on each 
network link. The first best pricing may distort the traffic 
allocation over the entire network and may cause degra-
dation instead of improvement in social welfare in reality. 
In fact, drivers may not always have perfect information 
about the travel cost. Besides, they may not always make 
a reasonable decision and choose the route by their minds 
rather than travel time. When faced with a choice situa-
tion, the preferences of a person towards each alternative 
can be determined by the utility, reflecting each alterna-
tive's attractiveness. The utility is a function of the alter-
natives' attributes and the features of the decision-maker. 
However, the utility cannot be explicitly observed because 
it cannot quantify the characteristics influencing a per-
son's decision. The utility is then modeled as being ran-
dom. Consequently, the choice offers only the likelihood 
of which options are chosen (Sheffi, 1985).

As a potential traffic assignment method for future 
transport with automated vehicles, the deterministic sys-
tem optimum (DSO) is modeled and simulated to inves-
tigate the potential changes it may bring to the existing 
traditional traffic system. In this paper, stochastic user 
equilibrium (SUE) is used to simulate the conventional 
traffic assignment method. By comparing the two simu-
lation results, one can see the difference between the two 
traffic allocation modes. DSO has considerable advan-
tages in reducing trip duration, time loss, waiting time, and 
departure delay under the same travel demand. The SUE 
traffic assignment has a more dispersed vehicle density 
distribution. Moreover, DSO traffic assignment helps the 
maximum vehicle density of each alternative path arrive 
almost simultaneously. Furthermore, DSO can significantly 
reduce or avoid the occurrence of excessive congestion.

This paper contains five sections. Section 1 introduces 
the background and the investigated problem. The travel 

time model, pricing scheme, and route choice model are 
inspected in Section 2. Section 3 clarifies the road network, 
travel demands, and the reroute algorithm. The trip infor-
mation and traffic distribution are analyzed in Section 4. 
The conclusion is described in Section 5.

2 Methodology

This study investigates the potential benefits of the DSO 
traffic assignment over the SUE. Congestion pricing is an 
indirect traffic control method to realize the SO.

2.1 Volume delay function

Travel time models represent the temporal variations of 
link traffic flows and link travel times in dynamic traffic 
assignment formulations. To ensure the first in first out 
(FIFO) queuing discipline, Daganzo (1995) suggested that 
travel time models should only be a function of the amount 
of link traffic.

The four-step model has been extensively used as a travel 
demand forecasting model for decades. As a critical element 
in the travel demand forecasting process, traffic assignment 
allocates travel demands to the transportation supply (net-
work) based on travel costs. The travel cost is usually con-
sidered to be the travel time between the origin and the des-
tination. The Volume Delay Function (VDF) is commonly 
applied in static macroscopic traffic assignment to describe 
the resulting link travel times as a function of flow (the result 
of assignment), capacity, and free-flow travel time (constant 
parameters of the link). This function aims to reproduce 
congestion effects in the macroscopic model and serves 
as an objective function in the assignment problem where 
the travel times are minimized (Fukushima, 1984).

The US Bureau of Public Roads (BPR) developed a 
VDF, as shown in Eq. (1), in 1964, which is a well-known 
formula to determine the travel time in each utilized link 
(United State, Bureau of Public Roads, 1964).

T T
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where T is the travel time (minute). T0 is the free flow travel 
time (minute); ν is traffic volume [Passenger Car Unit 
(PCU)/hour]; c equals the practical capacity (PCU/hour); 
α, β are dimensionless tuning parameters. 

Unlike the traffic flow's physical representations, the 
VDF allows the flow to exceed the link capacity. In VDF, 
the v/c ratio can be larger than 1, which is impossible by 
considering the definition of road capacity. Consequently, 
the flow volumes applied in the macroscopic assignment 
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are not rigidly referred to as the physically measured flows. 
The flow used in the VDF is treated more like a demand 
flow, which becomes delayed if it exceeds capacity. As 
a result, the VDF cannot be evaluated directly from the 
actual field measurements. Kucharski and Drabicki (2017) 
proposed a technique to overcome this problem by replac-
ing the traffic flow with the traffic density (PCU/km). 
They estimate the VDF by using density instead of flow. 
The formula is then straightforwardly written as:

T k T
k

k
crit
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.  (2)

Here, k is the traffic density. k
crit

 is the critical density 
at which the maximum flow occurs. α and β are tuning 
parameters, similarly as used in Eq. (1).

2.2 Pricing scheme

The difference between UE and SO is accounted for by the 
individual user's failure to share the cost he/she contrib-
utes to the total travel cost. The theoretical background of 
congestion pricing relies upon the marginal-cost pricing 
(or the first best pricing) principle, which states that a toll 
equals the difference between the marginal social cost and 
the private cost to optimize the social surplus. The mar-
ginal travel cost of a link a at the flow T

a
 is defined as the 

increase in total travel cost on the link a caused by an 
additional traveler. The difference between private and 
social cost is T k k l

a a a a

' ( ) ⋅ ⋅  (Patriksson, 2015). In order 
to achieve economic efficiency, every traveler must be 
made aware of the costs he/she imposes on other trav-
elers. In this way, the traveler is supplied with an incen-
tive to minimize social costs. Any SO problem may be 
solved as a UE problem by redefining travel costs as 
C T T k k l
a a a a a a
= + ( ) ⋅ ⋅'  (Patriksson, 2015).

The first derivative of the travel time model (Eq. (2)) is:
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Thus, the SO marginal cost pricing becomes:
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Here, T(k) is the travel time, which is the user equilib- 

rium pricing. k l dT
dk

⋅ ⋅  is the marginal travel time that the  

inserted vehicle has incurred. l is the length of the road.
In this work, DSO assigned vehicles according to the 

pricing and travel time. On the contrary, the SUE allo-
cated cars only considering the travel time.

2.3 Route choice models

When faced with a choice, an individual's preferences 
toward each alternative can be described by the utility, 
representing each alternative's attractiveness. The util-
ity is a function of the attributes of the options and the 
decision maker's socioeconomic characteristics. However, 
the utility cannot be observed directly because the fea-
tures that influence the individual's decision cannot be 
measured. Therefore, the utility is modeled as random. 
Consequently, the choice only provides the probability 
with which options are selected.

In Simulation of Urban MObility (SUMO), the default 
route choice algorithm is called Gawron (Lopez et al., 2018). 
For each driver, the Gawron algorithm calculates possibil-
ities for selecting from a group of optional links. To com-
pute these probabilities, the edge travel time of the pre-
vious simulation stage, the sum of edge travel times of 
alternative routes, and the prior likelihood of selecting a 
route are considered. The default route choice algorithm 
is applied to simulate the SUE. The route choice model of 
DSO is deterministic, which is realized via SUMO Traffic 
Control Interface (TraCI) (Lopez et al., 2018). In the simu-
lation, DSO traffic assignment allocated all vehicles to the 
route with the lowest marginal travel time.

3 Simulation scenarios

To study the possible improvement of DSO assignment on 
the current traffic system, SUMO was utilized to simulate 
two scenarios with the same traffic demand on one net-
work. A stochastic UE assignment was used to simulate the 
existing traffic system. The possible future DSO assign-
ment was realized with the marginal cost pricing scheme.

3.1 Transportation road network and demands

As shown in Fig. 1, an artificial road network with three 
alternative roads was used to verify the proposed dynamic 
link-based marginal cost pricing strategy's validity. There 
was one pair of origin and destination. The origin edge was 
400 meters long. At the end of it is 100 meters of connect-
ing road. Three alternative routes converged the connec-
tion edge and their joint ends. At this intersection, a traffic 
signal light was equipped to regulate the traffic. The inter-
section was connected to the destination with an edge. At 
the start point of the destination, there was an intersection 
where another traffic light (traffic light 2) was located. A 
dummy edge was introduced to equip the traffic light. A 
variable speed signal (VSS) was applied to the destina-
tion. Traffic light 2 and the VSS were used to simulate the 
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downstream traffic conditions. Except for route a, route b, 
and the dummy route, all edges have two lanes. The 
parameters of the three alternatives were listed in Table 1. 
Length means the length of the alternative routes without 
the common roads. α and β were fitted by the least square 
method. The critical densities k

crit
 were estimated from the 

fundamental diagrams of each route.
The travel time curves and pricing curves are shown 

in Fig. 2. The dashed curves are the travel time curves of 
available paths. The solid lines are the marginal pricing 
curves. As shown from the figure, when the vehicle den-
sity on the road is low, the curves are relatively flat. With 
the increase of density, the rate of increase of toll curve is 
obviously higher than the increment of travel time curve. 
This is because under the SO pricing scheme, the driv-
ers would feel not only their own travel time, but also the 
marginal increment in travel time they would impose on 

other travelers along the same road. The pricing curves are 
more diffuse than the travel time curves. In the case of the 
same travel time, for example, 200s, the difference in the 
pricing curve is even more significant. This means driv-
ers are more aware of the different capacities of alterna-
tive routes. More drivers will be directed to high-capacity 
roads to give full play to their carrying capacity. 

As shown in Fig. 3, the travel demands for the simula-
tion first increased gradually over time and then decreased 
gradually at the same pace when it reached its peak.

Vehicles could be routed dynamically in the ongoing 
SUMO simulation by enabling the cars to re-compute 
their route periodically. The routing procedure takes into 
consideration the current and the prior traffic situation. 
Therefore, it can adapt to congestion and other changes in 
the road networks. If the dynamic rerouting is applied to 
a simulation, the road network's travel times are collected 
for all edges. The collected edge travel times are updated 
periodically. When a vehicle is making a routing decision, 
it always takes the swiftest route to its destination accord-
ing to travel times on different links. By properly defining 
the rerouting parameters, one can easily realize the user's 
optimum traffic assignment. 

The SUMO routing algorithms aim to minimize the travel 
time between passengers' origin and destination by default. 

Origin

Route a

Route b

Route c

Traffic light 1 Traffic light 2

Dummy edge

Destination

Fig. 1 Simulation traffic network

Table 1 Attributes of alternative routes

Route a Route b Route c

Length (m) 1071 1000 1071

α 0.95 1.12 1.91

β 2.08 1.68 1.55

k
crit

 (veh/km) 50 50 70

Lanes 1 1 2

Fig. 2 Travel time and pricing curves Fig. 3 Travel demands
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The travel time can either be obtained from the speed lim-
its and edges' length, retrieved during the simulation run-
time from the simulation state, or loaded from a data file. In 
this work, the Dijkstra routing algorithm was applied, and 
the travel times were retrieved from the simulation state.

3.2 Rerouting algorithm

In SUMO simulation, vehicles can have automatic rout-
ing in four ways: configuring options, incomplete trips 
or flows, a declaration in vehicle parameters, and using 
TraCI. In this paper, all vehicles were defined with incom-
plete trips. Consequently, all cars got automatically routed 
at insertion. Besides routing at departure, the configuring 
options were applied to realize the user's optimum traf-
fic assignment. The configuring options were defined as 
follows. The rerouting probability equaled 1 to enable all 
vehicles in the network to re-compute their routes. The 
interval for updating the edge weights and the rerout-
ing period was set to 2 seconds to maintain consistency 
with the system optimum traffic assignment setting. The 
importance of earlier edge weights for exponential averag-
ing the edges' travel time was zero (as by default) to merely 
consider the current travel times. 

By contrast, the optimized simulation rerouted vehicles 
with the help of the TraCI. As shown in Fig. 4, in TraCI, 
the travel time is changed according to the pricing method 
to let drivers feel the marginal travel time increment they 
put on other vehicles driving on the same road. At the start 
of the simulation, a counter i was set to be 0. The simula-
tion ran by itself for two seconds. After which, the number 
of vehicles on each alternative road was retrieved to calcu-
late the marginal travel time through the marginal pricing 
scheme. In the next stage, the marginal travel times for 
each route were sent to vehicles still on their way out, and 
these vehicles began to recalculate their routes based on 
the marginal travel time. The next step was to determine 
whether the counter i was greater than 12600. If not, it was 
increased by one to the next iteration until it was greater 
than 12600 and the simulation stopped. The whole simula-
tion process lasted 7 hours.

4 Results

During the simulation, trip information and the vehicle 
numbers on the alternative routes were collected.

4.1 Trip information

Each simulation has completed 5250 trips. The same 
parameters for each journey of the two simulations are 

aggregated in the following table. In Table 2, five attri-
butes of trips are listed. Trip duration is the time the vehi-
cles needed to accomplish the route. Compared with the 
stochastic user equilibrium, the cumulative trip duration 
of the deterministic system optimum is reduced by 14 %. 
Route length stands for the aggregated length of vehicles' 
route. The two assignment methods are almost equal on 
this parameter. As a result of driving below the optimum 
speed, time loss occurs. This takes into account the slow-
downs due to the intersections or congestions, etc. SO 
assignment loses significantly less time than UE. Around 
26 % of the time can be saved with the help of SO in the 
simulation scenarios. The waiting time is the time at 
which the speed of the vehicle is not faster than 0.1 m/s. 
The difference in waiting time is 17% between UE and SO 

Start

End

Yes

No

Retrieve the vehicle
numbers on all edges

Update the utility of
alternative edges and
send it to the vehicles

Reroute the vehicles
based on the updated

utilities

Run simulation 2s

Fig. 4 Reroute algorithm

Table 2 The aggregated trip information of two methods

Parameters UE SO Relative 
change

Trip duration (s) 1834500 1575653 −14 %

Route length (m) 10739200 10723800 −0.1 %

Time loss (s) 991799 733784 −26 %

Waiting time (s) 492734 410589 −17 %

Departure delay (s) 78970 35284 −55 %
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assignment. The departure delay is the time the drivers 
have to wait until their journey starts. When there are too 
many cars on the origin edge, vehicles cannot be inserted 
into the network on their schedule. The departure delay 
of UE is more than twice than that of SO. From the data, 
although the route length is almost the same, SO has con-
siderable advantages in terms of reducing trip duration, 
time loss, waiting time, and departure delay.

4.2 Traffic distributions
Figs. 5 and 6 show the variation of vehicle density with 
time along the alternative routes under UE and SO traffic 
assignment modes, respectively. As shown in the figure, 
the horizontal axis is the simulation time, starting from 
0 seconds and lasting for 7 hours. The vertical axis shows 
the density of vehicles on each alternative path. From top to 

bottom, each of the subgraphs represents route a, route b, 
and route c, respectively.

By comparing the two figures, one can easily find three 
main differences: the dispersion degree of density distri-
bution, the arrival time of the peak density, and the high-
est density. The stochastic UE traffic assignment has a 
more dispersed vehicle density distribution. This assign-
ment is less of a disadvantage when demand is small. 
Nevertheless, as travel demand approaches the capac-
ity of the road network, one will find that some roads are 
overcrowded and others are underused. This phenomenon 
leads to drivers wasting more time on crowded streets, and 
underused roads are not abundantly utilized.

In the case of deterministic SO traffic assignment, 
the maximum vehicle density of each alternative path arrives 
almost simultaneously. However, in the stochastic UE traf-
fic flow allocation, the vehicle peak density of each path is 
arriving one after another. When drivers choose a route based 
solely on travel time, it can lead to too many vehicles enter-
ing the same road in succession. As a result, roads become 
overcrowded. It takes a while for new drivers to realize that 
there is an underused road, and then for another wave of driv-
ers to choose the underused road, which in turn causes the 
road to become overcrowded. It would take a considerable 
time before the new traffic would perceive another underuti-
lized road and move en masse, leading to overcrowding.

The maximum density of stochastic UE allocation is 
more than twice than that of deterministic SO assignment, 
indicating that SO can significantly reduce or avoid exces-
sive congestion. From the point of view of the peak vehi-
cle density, the advantage of the high capacity of route c 
is exerted in the case of SO. Because travel demand is 
dynamic, the maximum density on route c is not that dif-
ferent from the maximum density on route b.

5 Conclusion

In this paper, two traffic assignment models have been 
investigated to explore the possible advantages of deter-
ministic social optimum traffic assignment over the sto-
chastic user equilibrium assignment. The newly introduced 
modified VDF was used to calculate travel time and mar-
ginal travel time. The system optimal assignment method 
of marginal travel time is realized by using the model. A 
simple fork road network was created using SUMO. In this 
model, two modes of traffic assignment were realized. By 
comparing the results of the two simulations, the possible 
benefits of deterministic SO were found. This study found 
that SO has considerable advantages in terms of reducing 

Fig. 5 Traffic distribution of SUE for the 3 routes of the network

Fig. 6 Traffic distribution of DSO for the 3 routes of the network
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trip duration, time loss, waiting time, and departure delay 
under the same travel demand.

What is more, the stochastic UE traffic assignment has 
a more dispersed vehicle density distribution. Moreover, 
deterministic SO traffic assignment helps the maximum 
vehicle density of each alternative path arrive almost 
simultaneously. Last but not least, SO can significantly 
reduce or avoid the occurrence of excessive congestion.

The drawback of the present study is that the two traffic 
assignment models differ in two aspects: the certainty of 

choice and travel time calculation. It is unclear that which 
part exactly contributed to the advantage. The goal for 
the future is to examine the contribution of each factor.
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